DIGITAL COMPUTER CALCULATION OF TEMPERATURE
FIELDS PRODUCED IN A WORKPIECE BY REPEATED
APPLICATIONS OF A SOURCE OF HEATING

Yu. A. Mel'nikov and A. K. Tsokur UDC 536.2

A method of digital computer calculation of the temperature fields produced in a component
under conditions of repeated heating and cooling is described. The temperature fields pro-
duced by internal grinding are calculated.

Various engineering methods of calculation are known, by means of which the thermal and residual
stresses produced in a component during machining can be calculated and the possible occurrence of struc-
tural changes investigated. These methods presuppose knowledge of the temperature fields produced in the
components.

Although there are many papers of an applied character on this subject [1-3] they all adopt a compu-
tational scheme involving a single application of the source of heat to the component.

There are many engineering processes in which the component is heated and cooled in a periodic
manner. TFor example, in a real grinding process the component is periodically heated in the cutting zone
and cooled outside this zone. The formulas given in the cited papers will reflect the true picture only pro-
vided the component manages to lose all its heat during the cooling period and provided the boundary condi-
tions do not change. There is much experimental evidence that the thermal processes do not have time to
stabilize themselves during a single revolution of the workpiece even when steps are taken to cool it, In
grinding practice it very often happens that the workpiece is machined without any cooling at all (internal
grinding, pointing, and so on).

Evidently, a calculation of the temperature field which is based upon a single application of the source
of heat cannot give the true picture of the temperature distribution in such cases.

An attempt is made in the present article to develop a computational scheme suitable for repeated
applications of the source of heat. The results show that in some cases the single-application scheme pre-
dicts temperatures that are much too low, sometimes distorts the temperature fields produced in the com-
ponent, and fails to give reliable estimates of the maximum temperatures produced —something absolutely
essential in the investigation of possible structural changes. Also, computations based on the single-appli-
cation scheme do not yield the true temperature gradients.

The kinematics of grinding imply that during the machining process each point of the workpiece is
periodically heated (when it comes into contact with the abrasive disc) and cooled (in the period between
contacts). Each of the cycles of heating and cooling is characterized by its own boundary conditions relat-
ing to the thermal state of the component. '

We consider the following boundary problem of thermal conductivity:
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Fig. 1. Block diagram of program for computing temperature fields on the Minsk-22 digital
computer. 1) Input of initial data and printing of symbol characterizing variant; 2) computa-
tion of time step and of mesh dimensions for grinding and cooling stages; 3) computation of
temperatures at mesh nodes during grinding stage; 4) transfer of temperature values of last
time sheet of previous operator to zeroth time sheet of subsequent operator; 5) computation
of temperature values at megh nodes during cooling stage; 6) logical comparison of previous
heating-cooling stages with subsequent; 7) stop.

Fig. 2. Temperature fields produced by internal grinding. Units: u {°C}), x {mm).

cycle II (cooling)
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and so on.

In this manner the real grinding process is described by a sequence of alternating second and third
boundary problems of thermal conductivity.

Evidently, a stationary regime will be set up some time after grinding has begun. The error in the
single-application computational scheme stems from the fact that the transient process ig disregarded.

To solve the boundary problem formulated above we utilized the explicit difference scheme described
in [4-6]. The stability condition imposes a limitation on the permissible magnitude of the time step, which
slightly increases the number of nodes of the computational mesh in comparison with other mesh methods.
As far as the use of digital computers is concerned, however, this is more than offset by the great simpli-
city of the algorithm for computer realization of the explicit method.

The equation of thermal conductivity is replaced by the following finite-difference eguation:

2la - la
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Remembering the condition for convergence of the method
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Thus, to obtain the temperature fields in the component, the basic arithmetical operator of the meth-
od must realize formula (4) for all nodes of the computational mesh.

To simplify the calculations we go over from the case of a semi-infinite rod (0 = x < =) to a rod of
finite length (0 < x = H). The quantity H we take to be the depth at which the thermal flux at the end face
(x = 0) has no effect on the duration of the entire machining process (H is obtained from experimental data).
At the end face (x = 0) we realize the boundary conditions corresponding to the given cycle (second kind for
grinding, third kind for cooling).

The computational step h in the spatial variable we choose in accordance with the required accuracy.
The step I, as previously mentioned, is determined from condition (2).

A block diagram of a program for putting the computational algorithm into effect on the Minsk-22 is
givenin Fig. 1.

Ag can be geen from the block diagram the program can be used to calculate the temperature fields
produced during grinding. Some experimental data are required by way of initial values: the heat flux den-
sity g at the workpiece-tool contact; the coefficient of heat exchange during cooling o; the depth H at which
the heat flux at the end face (x = 0) has no effect on the duration of the entire period of treatment (more
precisely, on the duration of the transient regime).

The program yields not only the fields after the first pass and in the stationary regime (from which
the error of the single-application scheme can be egtimated) but also the fields of maximum temperatures,
from which conclusions can be drawn concerning the possibility of structural changes in the workpiece.

The program was employed to calculate the temperature fields produced during the internal grinding
of an alloy with a thermal conductivity A = 40 W/m -deg.

The results of the calculations are presented in Fig. 2, which shows the temperature fields produced
under various grinding conditions (for curves 1-4, 7, 8 the workpiece velocity Vyyp = 0.2 m/sec, t =0.01mm;
for curves 5 and 6, vyp=10.5 m/sec, t=0.01 mm)., Curves 1, 3, 5 correspond to the peak temperatures
and curves 2, 4, 6 to the peak temperature gradients. Curves 3 and 4 depict the temperature field after
grinding cycle I. The heat remaining in the workpiece after the cooling cycle I (o = 11,700 W/m? - deg)
gives rise to the temperature field shown by curve 8.

With succeeding grinding —cooling cycles the contact temperature inereases, as does the amount of
residual heat and the depth to which the workpiece is heated. Curves 1, 2, and 7 depict the thermal state
of the workpiece after cycle XV; the contact temperature has increased by 105°C and the amount of accu-
mulated heat by more than a factor of 3. This can have a considerable effect on structural changes and
thermal deformations.

Increasing the speed of the workpiece helps to reduce the contact temperature and the amount of accu-
mulated heat. For v, =0.5 m/sec there is no accumulation of heat, i.e ., the heat produced during a grind-
ing cycle is completely lost during the subsequent cooling cycle. Only under such conditions is it possible to
utilize the formulas derived on the assumption of a single application of the grinding tool.

An advantage of the computational technique described above is that it is readily adapted to deal with the
quasi-linear formulation of the thermal conductivity problem in which allowance is made for the temperature
dependence of the thermophysical constants of the material of the workpiece.

NOTATION

u is the temperature of the point with coordinate x;
t is the time of heating or cooling;
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is the thermal flux density;

are the thermophysical constants of the material of the workpiece;

is the gpace variable computational step;

is the computational time step;

is the heat exchange coefficient;

ig the depth at which heat source ceases to have an effect;

is the translational velocity of workpiece.
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